You can do even faster, about 8ns (almost an additional 10x improvement) by using software perf events: PERF_COUNT_SW_TASK_CLOCK is thread CPU time, it can be read through a shared page (so no syscall, see perf_event_mmap_page), and then you add the delta since the last context switch with a single rdtsc call within a seqlock.
This is not well documented unfortunately, and I'm not aware of open-source implementations of this.
EDIT: Or maybe not, I'm not sure if PERF_COUNT_SW_TASK_CLOCK allows to select only user time. The kernel can definitely do it, but I don't know if the wiring is there. However this definitely works for overall thread CPU time.
That's a brilliant trick. The setup overhead and permission requirements for perf_event might be heavy for arbitrary threads, but for long-lived threads it looks pretty awesome! Thanks for sharing!
Me: looks at the resulting flamegraph. "what the hell is this?!?!?"
I've found all kinds of crazy stuff in codebases this way. Static initializers that aren't static, one-line logger calls that trigger expensive serialization, heavy string-parsing calls that don't memoize patterns, etc. Unfortunately some of those are my fault.
I also like icicle graphs for this. They're flamegraphs, but aggregated in the reverse order. (I.e. if you have calls A->B->C and D->E->C, then both calls to C are aggregated together, rather than being stacked on top of B and E respectively. It can make it easier to see what's wrong when you have a bunch of distinct codepaths that all invoke a common library where you're spending too much time.)
Regular flamegraphs are good too, icicle graphs are just another tool in the toolbox.
Also cool that when you open it in a new tab, the svg [0] is interactive! You can zoom in by clicking on sections, and there's a button to reset the zoom level.
I might be very wrong in every way but, string parsing and or manipulating and memoiziation... sound like a super strange combo? For the first you know you're already doing expensive allocations, but the 2nd is also not a pattern I really see apart from in JS codebases. Could you provide more context on how this actually bit you in the behind? memoizing strings seems like a complicated and error prone "welp it feels better now" territory in my mind so I'm genuinely curious.
Author here. After my last post about kernel bugs, I spent some time looking at how the JVM reports its own thread activity. It turns out that "What is the CPU time of this thread?" is/was a much more expensive question than it should be.
I don't think it is possible to talk about fractions of nanoseconds without having an extremely good idea of the stability and accuracy of your clock. At best I think you could claim there is some kind of reduction but it is super hard to make such claims in the absolute without doing a massive amount of prep work to ensure that the measured times themselves are indeed accurate. You could be off by a large fraction and never know the difference. So unless there is a hidden atomic clock involved somewhere in these measurements I think they should be qualified somehow.
Stability and accuracy, when applied to clocks, are generally about dynamic range, i.e. how good is the scale with which you are measuring time. So if you're talking about nanoseconds across a long time period, seconds or longer, then yeah, you probably should care about your clock. But when you're measuring nanoseconds out of a millisecond or microsecond, it really doesn't matter that much and you're going to be OK with the average crystal oscillator in a PC. (and if you're measuring a 10% difference like in the article, you're going to be fine with a mechanical clock as your reference if you can do the operation a billion times in a row).
This setup is a user space program on a machine that is not exclusively dedicated to the test running all kinds of interrupts (and other tasks) left, right and center through the software under test.
Fair point. These were run on a standard dev workstation under load, which may account for the noise. I haven't done a deep dive into the outliers yet, but the distribution definitely warrants a more isolated look.
I have that 10-30s time window to fill when claude might be loading some stuff ; the 1 liner is exactly what fits in that window - it makes me wonder about the original idea of twitter now that I think of it - but since it's not the same kind of content I don't bother with it.It really feels like "here is the stuff, here's more about it if you want to" - really really appreciate that form and will definitely do the same format myself
Does anyone knowledgeable know whether it’s possible to drastically reduce the overhead of reading from procfs? IIUC everything in it is in-memory, so there’s no real reason reading some data should take the order of 10us.
> Click to zoom, open in a new tab for interactivity
I admit I did not expect "Open Image in New Tab" to do what it said on the tin. I guess I was aware that it was possible with SVG but I don't think I've ever seen it done and was really not expecting it.
Normally, I use the generator included in async-profiler. It produces interactive HTML. But for this post, I used Brendan’s tool specifically to have a single, interactive SVG.
Only for some clocks (CLOCK_MONOTONIC, etc) and some clock sources. For VIRT/SCHED, the vDSO shim still has to invoke the actual syscall. You can't avoid the kernel transition when you need per-thread accounting.
If you look below the vDSO frame, there is still a syscall. I think that the vDSO implementation is missing a fast path for this particular clock id (it could be implemented though).
It took seven years to address this concern following the initial bug report (2018). That seems like a lot, considering how instrumenting CPU time can be in the hot path for profiled code.
I don't think I've ever seen less than 10x speedup after putting some effort into improving performance of "organic"/legacy code. It's always shocking how slow code can be before anyone complains.
This is not well documented unfortunately, and I'm not aware of open-source implementations of this.
EDIT: Or maybe not, I'm not sure if PERF_COUNT_SW_TASK_CLOCK allows to select only user time. The kernel can definitely do it, but I don't know if the wiring is there. However this definitely works for overall thread CPU time.
Me: looks at my code. "sure, ok, looks alright."
Me: looks at the resulting flamegraph. "what the hell is this?!?!?"
I've found all kinds of crazy stuff in codebases this way. Static initializers that aren't static, one-line logger calls that trigger expensive serialization, heavy string-parsing calls that don't memoize patterns, etc. Unfortunately some of those are my fault.
Regular flamegraphs are good too, icicle graphs are just another tool in the toolbox.
[0]: https://questdb.com/images/blog/2026-01-13/before.svg
Or another great one: new instances of ObjectMapper created inside a method for a single call and then thrown away.
If you're referring to "one-line logger calls that trigger expensive serialization", it's also common in java.
https://github.com/facebook/folly/blob/main/folly/docs/Bench...
edit : I had an afterthought about this because it ended up being a low quality comment ;
Bringing up such TLDR give a lot of value to reading content, especially on HN, as it provides way more inertia and let focus on -
reading this short form felt like that cool friend who gave you a heads up.
> Click to zoom, open in a new tab for interactivity
I admit I did not expect "Open Image in New Tab" to do what it said on the tin. I guess I was aware that it was possible with SVG but I don't think I've ever seen it done and was really not expecting it.
Normally, I use the generator included in async-profiler. It produces interactive HTML. But for this post, I used Brendan’s tool specifically to have a single, interactive SVG.
Love the people and their software.
Great blog Jaromir!
here it gets the task struct: https://elixir.bootlin.com/linux/v6.18.5/source/kernel/time/... and here https://elixir.bootlin.com/linux/v6.18.5/source/kernel/time/... to here where it actually pulls the value out: https://elixir.bootlin.com/linux/v6.18.5/source/kernel/sched...
where here is the vdso clock pick logic https://elixir.bootlin.com/linux/v6.18.5/source/lib/vdso/get... and here is the fallback to the syscall if it's not a vdso clock https://elixir.bootlin.com/linux/v6.18.5/source/lib/vdso/get...